
Navigating agility
in the software
development
lifecycle:
a strategic perspective

Agile principles enable organisations
to adapt swiftly to change. However,
taking an agile approach to delivering
software is often not straightforward.
Many organisations still struggle to
align software development team
objectives with the strategic goals of
the business.

Relying solely on cost, quality and time as
the primary drivers for decision-making
in the software delivery lifecycle (SDLC)
is restrictive. Shifting towards an agile
mindset requires a broader perspective,
effectively addressing scope, business
value and risk. By taking this approach,
time and quality become intertwined,
and a risk-adjusted return on investment
becomes crucial.

Although we’ve tried and tested a standard approach,
we also acknowledge several important variables:
•	 B2B products need a different approach than B2C

•	 a company with 12 employees will require a completely different
approach to one with 500

•	 pure software deliveries require a different approach than software
combined with (embedded) hardware deliverables

•	 in-house development needs different solutions to outsourced
(or hybrid) software development.

Introduction
You’ll see that we don’t mention
specific tools or suggest any particular
technologies. This is because an agile
mindset and approach should be
achievable with any up-to-date tools
and technology stack.

In future papers we’ll elaborate
further on this mindset and
approach. We’ll look in detail at
the engineering and organisational
choices that enable you to get fast
incremental and qualitative software
delivery and consider quality, cost
and agility from a quality assurance
(QA) and quality control perspective.

To truly embrace
agility, the
underlying ethos
and processes must
be woven into the
strategy of the
organisation.

Navigating agility in the software development lifecycle: a strategic perspective

Strategic perspective

These four key metrics are foundational elements
of the annual State of DevOps report2, originally
published by the DevOps Research and Assessment
(DORA) institute and since 2018, published by Google
Cloud. This report identifies elite, high, medium and
low performing teams by industry sector and seeks
to provide a reference point to help organisations
continuously improve their individual performance.
The State of DevOps report can be accessed via a
survey and is available so that anyone can quickly
check their own performance3.

Does this mean that to become a high performing
organisation a DevOps engineering model is essential?
Not necessarily. Metrics are always useful, but it’s
important to understand their limitations in this
instance. Here, they are only measuring productivity,
not how effectively business value is generated.

An organisation can be a high performer without
adopting DevOps, although they are likely to be
following the logic and reasoning that sits behind
delivery methodologies like Scrum or DevOps.

In the book ‘Modern Software Engineering’4 these
guiding principles are presented independent of any
software delivery methodology and support the idea
that high-performance need not be linked to specific
technologies or tools.

The most important takeaway from the ‘Accelerate’
metrics is that there is a correlation between
throughput (or speed) and stability (or quality).
The route to speed is high-quality software and the
route to high-quality software is speed of feedback.

In an attempt to identify what sets a
high-performing organisation apart from
low-performing ones when it comes to the
software delivery lifecycle, the well-known book
‘Accelerate’1 introduced four key metrics that
measure the productivity of software delivery
teams, categorised into two main attributes:
Throughput (or Tempo) and Stability.

Stability
3.	 Change failure rate: Ratio of failed

changes in production to all changes.

4.	 Mean Time to Recovery (MTTR): Time
taken to restore after a failure
in production.

Throughput
1.	 Lead time for changes: Time taken to

deliver code for a feature (from code
commit to deployment for end users).

2.	 Deploy frequency: Number of software
deployments in production, typically
reported per day, week or month.

Navigating agility in the software development lifecycle: a strategic perspective

1N. Forsgren, J. Humble and G. Kim, Accelerate: Building and Scaling High
Performing Technology Organizations, IT Revolution, 2018.
2Google, “State of DevOps Report,” https://cloud.google.com/devops/state-
ofdevops/
3Google, “DORA | DevOps Quick Check,” https://dora.dev/quickcheck/
4D. Farley, Modern Software Engineering: Doing What Works To Build
Better Software Faster, Pearson Education, 2022.

Figure 1 Classical waterfall model vs an agile incremental model that has throughput and
stability with an ‘inspect and adapt’ mindset. A transformation to throughput and stability
together with an ‘inspect and adapt’ culture leads to a stable cost over time, compared to an
increasing cost over time with a waterfall software delivery model’4.

Figure 2 Classical waterfall cost4

Adopting the mindset that throughput and stability belong together and embracing
an organisational culture of ‘inspect and adapt’ can lead to a more predictable and
less risky cost model. Inspection and adaptation are foundational principles in The
Scrum Guide5.

With classical waterfall thinking, the
most important decisions are taken at
the beginning of a project and change
becomes more expensive as time goes on.
At the beginning of a project, knowledge
levels are at their lowest and decisions
are often based on educated guesses
instead of accurate data. Not every piece
of the puzzle is fully understood at the
start and changes are not yet planned in.

4D. Farley, Modern Software Engineering: Doing What Works To Build Better Software Faster, Pearson Education, 2022.
5K. Schwaber and J. Sutherland, The Scrum Guide (edition November 2020), 2020.

Cost and risk Classical waterfall:
cost of change

WATERFALL AGILE INCREMENTAL

TIME

CO
ST

TIME

CO
ST

TIME

CO
ST

Navigating agility in the software development lifecycle: a strategic perspective

Companies
following an
adequate ‘inspect
and adapt’ mantra,
embrace changes
and allow for
experimentation
instead of
resisting changes.

Figure 3 Agile high throughput and high
stability software delivery cost4

With an agile approach, the cost of
change becomes flatter over time.
You’ll reduce the amount of time spent
on analysis and design, where no
business value is accessible to the end
user. Upfront activities are compressed
into iterations and feedback from end
users (either directly, or by a business
representative) can then be taken into
account in subsequent iterations.

Wherever software delivery teams can
work independently, you’ll see a flattened
cost model alongside an ‘inspect and
adapt’ mindset. Investment in rapid
feedback with automated quality gates
is needed to achieve high throughput
and stability.

However, in situations where there is
a strong inter-dependency between
software delivery teams, any speed
or quality issues can quickly become
a bottleneck for the business. Proper
technical and architectural alignment
needs to be addressed before you
can move towards more independent
working models.

Change can come from many sources:
improved ideas, learning from fixing
defects or from customer feedback. The
cost of change is under control in this
model because iterations can be viewed
as part of a defensive design strategy.

Each iteration is another opportunity to
learn, react and adapt as your knowledge
increases. If the value of a feedback
cycle is negative, there is an opportunity
to improve, without cost being out of
control. If there is positive feedback,
then there is an immediate return on
investment and cost will be reduced.

Agile high-throughput and
stability: cost of change

4D. Farley, Modern Software Engineering: Doing What Works To Build Better Software Faster, Pearson Education, 2022.
6D. North, “Scaling Agile Delivery Turing the lights on - Agile tour Vienna 2015,” 2015. https://www.youtube.com/watch?v=mWXTYNhz-sk

CO
ST

TIME

Risk-adjusted return
on investment
High-throughput and stability combined
with an ‘inspect and adapt’ mindset
(from now on referred to loosely as
‘continuous delivery’) flattens cost
because as a defensive design
strategy, it leads to risk-adjusted
return on investment.

As an example, if you have 1M EUR to
spend on a ten-month classical waterfall
project, for the sake of simplicity, this
means spending approximately 100K EUR
each month. If the right decisions are
made at the beginning of the project, you
start seeing a return on your investment
after ten months. If you make any poor
decisions, your cost will go up and any
return on investment will be delayed. In
the worst case, when the project fails
to deliver any of the expected business
outcomes, you’ll see a complete loss of
the 1M EUR.

If you were to spend the same 1M EUR
using a continuous delivery approach,
after two months a minimal viable
product would make it to production
stage and you’re already seeing some
return on investment. You’ve also got
the additional benefit of being able to
introduce improvements based on actual
(empirical) customer feedback. This
is risk-adjusted return on investment
in action. In this case, if the expected
business outcome is not as good as
anticipated, the project can be stopped
early without spending the whole of the
1M EUR.6

Navigating agility in the software development lifecycle: a strategic perspective

Getting the cost of change under
control is relatively straightforward
if you’ve got a greenfield project,
or you’re a start-up company. The
challenge is how to implement
a continuous delivery model in a
brownfield situation.

Many companies set about it in the
wrong way and stick to ‘agile’ as if it were
a religion. They go to church, but don’t
actually believe in the set of values and
ideals which lie at the heart of it. They
are agile by name only, which can result
in even worse misalignment between
business and engineering than if they
had stuck to a waterfall way of working.
Bad agile implementation can be a worse
enemy than using a slower process
that’s already known and proven. In this
situation, bringing the whole business
up to speed with agile values and ideals
is the first step. Bringing in external
guidance to help with self-reflection can
also speed up the transition to agility.

7C. M. Rebelo, “Agile’s worst enemy is not waterfall - is bad
agile,” 14 12 2018. Available: https://www.linkedin.com/
pulse/agiles-worst-enemywaterfall-bad-agile-cristina-
moura-rebelo.
8“SAFe - Scaled Agile Framework,”
https://scaledagileframework.com
9Gene Kim, Jez Humble, Patrick Debois & John Willis,
The DevOps Handbook, IT Revolution Press, 2016

Transformation and agile scaling
When a company uses terms or metrics
such as ‘team velocity’ or ‘lines of code’,
it can be a sign that agility is superficial.
These measures don’t cover productivity
or business value and are possibly
harmful for assessing team productivity.

In situations where software delivery
teams are not allowed to experiment,
manage their own work, or acquire the
right competencies, their motivation
can dip dramatically. The teams feel
little sense of mastery, autonomy and
purpose. Instead, they feel emotional and
economic pressure to succeed. They stop
adapting, learning and putting the best
effort into their work7.

Organisations also incorrectly assume
that multiple teams delivering software
in the same iterative cadence represents
agile maturity.

Agile maturity is improving
value delivery iteratively to
the end consumer
An agile cadence is of no use if the
value delivery (or business impact) to
the customer slows down. ‘Inspect and
adapt’ is a mindset, a culture and the
process follows on from there. This is not
the same as not having a plan.

Delivering customer value is the main
priority and allowing experimentation
and learning to get there more efficiently
is the goal. Eliminating low value
improvements should also be included.

In a brownfield situation, adopting agile
methodologies such as Scrum, Kanban
or XP is very hard. These methodologies
which are typically very successful when
used by smaller start-ups, scale badly for
larger brownfield projects.

SAFe (Scaled Agile Framework8) for
example, is an attempt at scaling agility.
But with a single hardening or learning
iteration at the end, it doesn’t offer a
stable cost model strategy, or a culture of
continuous improvement.

Undertaking the transformation to
a continuous delivery agile model is
challenging but according to Accelerate,
it will be rewarding9. There’s no
one-size-fits-all and each organisation
must overcome the hurdles one by one.
The DevOps Handbook comes with
excellent suggestions on how to start
your cultural transformation. We’ll also
cover more on this in our upcoming paper
on the engineering perspectives of the
software development lifecycle.

Navigating agility in the software development lifecycle: a strategic perspective

Let’s now look at why a loosely coupled architecture is good practice. From
an engineering perspective, if system components are tightly coupled, each
component depends directly on others. A tightly coupled design can impede an
‘inspect and adapt’ mindset because change in one area ripples through to other
areas. Any component can quickly become a bottleneck for high-throughput and
high-stability of the system.

Tight coupling strongly limits the ability of an organisation to transform to agile
or to scale up. Loose coupling of organisational components and independent
work streams is good practice.

Tight coupling also requires extra communication, additional alignment
on work, more rigorous processes and a central decision-making authority to
deliver business value. Any misalignment can become a bottleneck for swift
and adequate business delivery. (Figure 4)

On the flip side, loosely coupled organisations don’t need any direct involvement
with other areas. Any misalignment would not impede business value delivery,
because alignment is not essential. Risk-adjusted return on investment also
applies when adopting loosely coupled design to your organisation. (Figure 5)

Loose coupling of teams and technologies enables agility, resilience and with
that greater quality. Furthermore, increasing headcount is easier to manage
because enabling new, small work stream-oriented teams is simpler.

Here are some of the signs of a poorly scaled and misaligned way of working:

•	 throughput decreases (or worst case, comes to a halt) if resources are
added to your project in its current way-of-working

•	 development teams spend more time in meetings instead of delivering
potentially shippable code

•	 production systems become unstable when deploying more frequently
or when adding resources.

Keep in mind that any agile methodology is only a piece of a much bigger
puzzle, one that can only be solved using a change of culture and mindset.

Figure 4 Misaligned scaling with tight coupling. Figure 5 Loosely coupled aligned agile scaling. Minimise input, maximise output.

PRODUCT WORK WORKVALUE VALUE

Team 1

Team 3
...

Team 2

Team N-1
Team N

Feat. α

Feat. β	 ...

Capability |

£

¥
$€

Team α

Team β

Capability Team |

£

¥
$€

£

¥
$€

£

¥
$€

Navigating agility in the software development lifecycle: a strategic perspective

Conclusion

Start your quality transformation

Find out more about our Quality Engineering services
on our website or get in touch with us today.

In conclusion, embracing agile
principles requires a strategic
alignment of software development
with broader business objectives.
At Resillion, we understand the
challenges and nuances of modern
software delivery. Our 700+ experts
worldwide offer end-to-end digital
testing services, ensuring your
products are high-quality, secure and
aligned with your strategic goals.

Navigating agility in the software development lifecycle: a strategic perspective

